Sometimes, it is easier to identify an insect by the evidence it creates than by seeing the bug itself. Such is the case with the abundant, but tiny, hackberry psyllids, genus Pachypsylla in the family Psyllidae and true bug order Hemiptera. Psyllids are also known as "jumping plant lice" for their resemblance to aphids and ability to vault themselves away from danger.
Along one of the streets that borders our townhouse complex in Colorado Springs are a pair of hackberry trees, among the few planted ornamentals that are not oak, maple, or elm. They are invariably exploited every summer by Pachypsylla celtidismama, which produces "nipple galls" on the underside of hackberry leaves. The small, tumor-like growths do not seem to affect the health of the tree in the least, but provide housing and food for the tiny insect within each one. Up to 52 galls have been found on a single leaf (Caldwell, 1938), and they vary from smooth in texture to rather hairy. Double and triple galls are not unheard of, but it is rare to find more than one nymph occupying each gall.
The adult stage of hackberry psyllids will start appearing shortly, if they are not emerging already. Adults of P. celtidismama are only 3.5-4.5 millimeters in length from "nose" to the tips of the folded wings. They resemble tiny cicadas, but can also be confused with barklice, order Psocodea. Barklice have chewing mouthparts, though, while psyllids in general have beak-like piercing-sucking mouthparts they use to tap plant sap.
Hackberry psyllids make themselves a real nuisance when they start seeking nooks and crannies in which to hibernate. They can gather by the dozens, if not hundreds, on the exterior of doors, window screens, and the siding of homes. They pose no threat, of course, and simply hosing down the masses with water will solve the problem. The appearance of these insects en masse is a brief affair anyway.
Next spring, female psyllids will deposit eggs on the leaves of hackberries at the precise time when the leaves begin unfolding from the bud. Should a psyllid deposit her eggs too early, or too late, and the chances of successful development of her offspring plunges dramatically.
The formation of the bulging gall is the tree's response to the feeding of the nymph that hatches from the egg. The little dome-like pocket insulates the nymph from hostile abiotic environmental factors, and protects it from at least some predators and parasites. The nymph goes through five stages, the last instar illustrated in the images below. Note the two pairs of developing wing pads. The spike-like projections on the rear of the insect will help it to cut an exit in the gall before it emerges as an adult.
Despite their seemingly impenetrable fortress, the nymphs are still vulnerable to tiny parasitic wasps, including Psyllaephagus spp. (family Encyrtidae), and Torymus spp. (family Torymidae). The larval wasps feed as parasites on the nymphs and then chew their way out of the gall once they complete development.
This, and the other six species of hackberry psyllids, range pretty much wherever hackberry occurs naturally, and increasingly where it is used as an ornamental tree. The different species of psyllids make correspondingly different styles of galls, so it is easiest to assess the gall shape, size, and location to determine which psyllid is responsible. Keep in mind that gall midges (family Cecidomyiidae) can also create galls on hackberry.
You might try rearing a few galls to see what parasites emerge along with the adult psyllids. It is entirely possible you could record a new host record in the process.
Sources: Berenbaum, May R. 1989. Ninety-nine Gnats, Nits, and Nibblers. Urbana: University of Illinois Press. 263 pp.
Caldwell, John S. 1938. "The Jumping Plant-lice of Ohio," Ohio Biological Survey Bulletin 34, vol. VI, No. 5: 229-281.
Winterringer, Glen S. 1961. "Some Plant Galls of Illilnois," Story of Illinois Series No. 12. Urbana: Illinois State Museum. 51 pp.
No comments:
Post a Comment
Blog author currently unable to reply to reader comments, nor comment himself. Working to resolve this.